Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.341
1.
J Cancer Res Clin Oncol ; 150(5): 244, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717526

PURPOSE: Cystatin SA (CST2) belongs to the superfamily of cysteine protease inhibitors. Emerging research indicates that CST2 is often dysregulated across various cancers. Its role and molecular mechanisms in gastric cancer remain underexplored. This study aims to explore the expression and function of CST2 in gastric cancer. METHODS: CST2 expression was analyzed and validated through Western blot. CST2 overexpression was induced by lentivirus in GC cells, and the correlation between CST2 expression levels and downstream signaling pathways was assessed. In addition, multiple assays, including cell proliferation, colony formation, wound-healing, and transwell migration/invasion, were considered to ascertain the influence of CST2 overexpression on gastric cancer. The cell cycle and apoptosis were detected by flow cytometry. RESULTS: CST2 expression at the protein level was decreased to be reduced in both gastric cancer tissues and cell lines, and CST2 expression attenuate gastric cancer growth, an effect restricted to gastric cancer cells and absent in gastric epithelial GES-1 cells. Furthermore, CST2 was demonstrated to improve chemosensitivity to Oxaliplatin in gastric cancer cells through the PI3K/AKT signaling pathway. CONCLUSION: These findings indicate that CST2 is downregulated at the protein level in gastric cancer tissues and cell lines. Additionally, CST2 was found to attenuate the growth of gastric cancer cells and to enhance sensitivity to Oxaliplatin through the PI3K/AKT signaling pathway, specific to gastric cancer cell lines. CST2 may serve as a tumor suppressor gene increasing sensitivity to Oxaliplatin in gastric cancer.


Cell Proliferation , Oxaliplatin , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Oxaliplatin/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Salivary Cystatins/metabolism , Salivary Cystatins/genetics , Apoptosis/drug effects , Drug Resistance, Neoplasm , Cell Movement/drug effects
2.
J Transl Med ; 22(1): 438, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720336

BACKGROUND: Advanced unresectable gastric cancer (GC) patients were previously treated with chemotherapy alone as the first-line therapy. However, with the Food and Drug Administration's (FDA) 2022 approval of programmed cell death protein 1 (PD-1) inhibitor combined with chemotherapy as the first-li ne treatment for advanced unresectable GC, patients have significantly benefited. However, the significant costs and potential adverse effects necessitate precise patient selection. In recent years, the advent of deep learning (DL) has revolutionized the medical field, particularly in predicting tumor treatment responses. Our study utilizes DL to analyze pathological images, aiming to predict first-line PD-1 combined chemotherapy response for advanced-stage GC. METHODS: In this multicenter retrospective analysis, Hematoxylin and Eosin (H&E)-stained slides were collected from advanced GC patients across four medical centers. Treatment response was evaluated according to iRECIST 1.1 criteria after a comprehensive first-line PD-1 immunotherapy combined with chemotherapy. Three DL models were employed in an ensemble approach to create the immune checkpoint inhibitors Response Score (ICIsRS) as a novel histopathological biomarker derived from Whole Slide Images (WSIs). RESULTS: Analyzing 148,181 patches from 313 WSIs of 264 advanced GC patients, the ensemble model exhibited superior predictive accuracy, leading to the creation of ICIsNet. The model demonstrated robust performance across four testing datasets, achieving AUC values of 0.92, 0.95, 0.96, and 1 respectively. The boxplot, constructed from the ICIsRS, reveals statistically significant disparities between the well response and poor response (all p-values < = 0.001). CONCLUSION: ICIsRS, a DL-derived biomarker from WSIs, effectively predicts advanced GC patients' responses to PD-1 combined chemotherapy, offering a novel approach for personalized treatment planning and allowing for more individualized and potentially effective treatment strategies based on a patient's unique response situations.


Deep Learning , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Male , Female , Treatment Outcome , Middle Aged , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Retrospective Studies , ROC Curve , Adult
3.
Br J Surg ; 111(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38722803

BACKGROUND: Gastric cancer with peritoneal metastases is associated with a dismal prognosis. Normothermic catheter-based intraperitoneal chemotherapy and normothermic pressurized intraperitoneal aerosol chemotherapy (PIPAC) are methods to deliver chemotherapy intraperitoneally leading to higher intraperitoneal concentrations of cytotoxic drugs compared to intravenous administration. We reviewed the effectiveness and safety of different methods of palliative intraperitoneal chemotherapy. METHODS: Embase, MEDLINE, Web of Science and Cochrane were searched for articles studying the use of repeated administration of palliative intraperitoneal chemotherapy in patients with gastric cancer and peritoneal metastases, published up to January 2024. The primary outcome was overall survival. RESULTS: Twenty-three studies were included, representing a total of 999 patients. The pooled median overall survival was 14.5 months. The pooled hazard ratio of the two RCTs using intraperitoneal paclitaxel and docetaxel favoured the intraperitoneal chemotherapy arm. The median overall survival of intraperitoneal paclitaxel, intraperitoneal docetaxel and PIPAC with cisplatin and doxorubicin were respectively 18.4 months, 13.2 months and 9.0 months. All treatment methods had a relatively safe toxicity profile. Conversion surgery after completion of intraperitoneal therapy was performed in 16% of the patients. CONCLUSIONS: Repeated intraperitoneal chemotherapy, regardless of method of administration, is safe for patients with gastric cancer and peritoneal metastases. Conversion surgery after completion of the intraperitoneal chemotherapy is possible in a subset of patients.


Peritoneal Neoplasms , Stomach Neoplasms , Humans , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/mortality , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Docetaxel/administration & dosage , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Infusions, Parenteral , Palliative Care/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Paclitaxel/administration & dosage
4.
Med Oncol ; 41(6): 148, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733486

Numerous herbal products have been the subject of research regarding their potential role in cancer prevention or adjuvant therapy. Pistacia atlantica and its main phytochemicals have garnered significant attention for their potential anti-cancer effects. The study aimed to assess the growth inhibitory effects of P. atlantica essential oil (PAEO) on MKN-45 and AGS cells. This study quantified the volatile compounds in PAEO using Gas Chromatography-Mass Spectrometry (GC-MS). Subsequently, MKN-45 and AGS cells were treated with varying concentrations of PAEO (5%, 2.5%, 1.25%, 0.625%, 0.3125%, 0.156%, 0.0781%, 0.0391%, 0.0195%) for 24 h. Cell viability was evaluated through the MTT assay. The impact of PAEO on gene expression was investigated by quantifying the mRNA levels of Bax and Bcl2 in the various experimental groups using quantitative Real-Time PCR (qRT-PCR) analysis. Additionally, flow cytometry was utilized to evaluate apoptosis in the treated cells. The analysis of PAEO revealed that α-pinene was the predominant monoterpene, constituting 87.9% of the oil composition. The cytotoxic effects of PAEO were evaluated, and it was found that the oil significantly reduced the viability of MKN-45 and AGS cells. The IC50 for MKN-45 cells was determined to be 1.94 × 10-3% after 24 h of treatment, while for AGS cells the IC50 was 2.8 × 10-3% after 24 h. Additionally, the research revealed that PAEO triggered a notable rise in apoptotic cells in both AGS and MKN-45 cell lines. Moreover, at the molecular level, the findings indicated an increase in Bax expression and a decrease in Bcl2 mRNA expression, providing further evidence of the induction of apoptosis in both MKN-45 and AGS cell lines following PAEO treatment. The findings of this study offer evidence supporting the cytotoxic effects of PAEO on gastric cancer cell lines by promoting apoptosis. The findings suggest that PAEO may offer potential as a therapeutic candidate in managing and treating gastric cancer.


Apoptosis , Cell Survival , Oils, Volatile , Pistacia , Stomach Neoplasms , Humans , Oils, Volatile/pharmacology , Pistacia/chemistry , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Gas Chromatography-Mass Spectrometry
5.
Sci Rep ; 14(1): 10745, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730240

Gastric cancer is one of the most common malignant tumors, and chemotherapy is the main treatment for advanced gastric cancer. However, chemotherapy resistance leads to treatment failure and poor prognosis in patients with gastric cancer. Multidrug resistance (MDR) is a major challenge that needs to be overcome in chemotherapy. According to recent research, ferroptosis activation is crucial for tumor therapeutic strategies. In this work, we explored the solution to chemoresistance in gastric cancer by investigating the effects of the Chinese medicine monomer baicalin on ferroptosis. Baicalin with different concentrations was used to treat the parent HGC27 and drug-resistant HGC27/L cells of gastric cancer. Cell viability was measured by CCK8, and synergistic effects of baicalin combined with oxaliplatin were evaluated using Synergy Finder software. The effects of baicalin on organelles and cell morphology were investigated using projective electron microscopy. Iron concentration, MDA production and GSH inhibition rate were measured by colorimetry. ROS accumulation was detected by flow cytometry. The ferroptosis-related genes (IREB2, TfR, GPX4, FTH1), P53, and SLC7A11 were analysed by Western blot, and the expression differences of the above proteins between pretreatment and pretreatment of different concentrations of baicalin, were assayed in both parental HGC27 cells and Oxaliplatin-resistant HGC27/L cells. Mechanically, Baicalin disrupted iron homeostasis and inhibits antioxidant defense, resulting in iron accumulation, lipid peroxide aggregation, and specifically targeted and activated ferroptosis by upregulating the expression of tumor suppressor gene p53, thereby activating the SLC7A11/GPX4/ROS pathway mediated by it. Baicalin activates ferroptosis through multiple pathways and targets, thereby inhibiting the viability of oxaliplatin-resistant gastric cancer HGC27/L cells and enhancing the sensitivity to oxaliplatin chemotherapy.


Drug Resistance, Neoplasm , Ferroptosis , Flavonoids , Oxaliplatin , Stomach Neoplasms , Tumor Suppressor Protein p53 , Ferroptosis/drug effects , Humans , Flavonoids/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Oxaliplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Cell Line, Tumor , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Drug Synergism , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Neoplastic/drug effects
6.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731847

Yamogenin is a steroidal saponin occurring in plant species such as Asparagus officinalis, Dioscorea collettii, Trigonella foenum-graecum, and Agave sp. In this study, we evaluated in vitro cytotoxic, antioxidant, and antimicrobial properties of yamogenin. The cytotoxic activity was estimated on human colon cancer HCT116, gastric cancer AGS, squamous carcinoma UM-SCC-6 cells, and human normal fibroblasts with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The amount of apoptotic and dead AGS cells after treatment with yamogenin was estimated with flow cytometry. Also, in yamogenin-treated AGS cells we investigated the reactive oxygen species (ROS) production, mitochondrial membrane depolarization, activity level of caspase-8 and -9, and gene expression at mRNA level with flow cytometry, luminometry, and RT-PCR, respectively. The antioxidant properties of yamogenin were assessed with DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays. The antimicrobial potential of the compound was estimated on Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Helicobacter pylori, Campylobacter coli, Campylobacter jejuni, Listeria monocytogenes, Lactobacillus paracasei, and Lactobacillus acidophilus bacteria strains. Yamogenin showed the strongest cytotoxic effect on AGS cells (IC50 18.50 ± 1.24 µg/mL) among the tested cell lines. This effect was significantly stronger in combinations of yamogenin with oxaliplatin or capecitabine than for the single compounds. Furthermore, yamogenin induced ROS production, depolarized mitochondrial membrane, and increased the activity level of caspase-8 and -9 in AGS cells. RT-PCR analysis revealed that this sapogenin strongly up-regulated TNFRSF25 expression at the mRNA level. These results indicate that yamogenin induced cell death via the extrinsic and intrinsic way of apoptosis. Antioxidant study showed that yamogenin had moderate in vitro potential (IC50 704.7 ± 5.9 µg/mL in DPPH and 631.09 ± 3.51 µg/mL in ABTS assay) as well as the inhibition of protein denaturation properties (with IC50 1421.92 ± 6.06 µg/mL). Antimicrobial test revealed a weak effect of yamogenin on bacteria strains, the strongest one being against S. aureus (with MIC value of 350 µg/mL). In conclusion, yamogenin may be a potential candidate for the treatment and prevention of gastric cancers.


Antioxidants , Apoptosis , Reactive Oxygen Species , Saponins , Stomach Neoplasms , Humans , Antioxidants/pharmacology , Saponins/pharmacology , Saponins/chemistry , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Cell Line, Tumor , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Anti-Infective Agents/pharmacology , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
7.
J Cell Mol Med ; 28(9): e18358, 2024 May.
Article En | MEDLINE | ID: mdl-38693868

Gastric cancer is considered a class 1 carcinogen that is closely linked to infection with Helicobacter pylori (H. pylori), which affects over 1 million people each year. However, the major challenge to fight against H. pylori and its associated gastric cancer due to drug resistance. This research gap had led our research team to investigate a potential drug candidate targeting the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. In this study, a total of 45 daidzein derivatives were investigated and the best 10 molecules were comprehensively investigated using in silico approaches for drug development, namely pass prediction, quantum calculations, molecular docking, molecular dynamics simulations, Lipinski rule evaluation, and prediction of pharmacokinetics. The molecular docking study was performed to evaluate the binding affinity between the target protein and the ligands. In addition, the stability of ligand-protein complexes was investigated by molecular dynamics simulations. Various parameters were analysed, including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM). The results has confirmed that the ligand-protein complex CID: 129661094 (07) and 129664277 (08) formed stable interactions with the target protein. It was also found that CID: 129661094 (07) has greater hydrogen bond occupancy and stability, while the ligand-protein complex CID 129664277 (08) has greater conformational flexibility. Principal component analysis revealed that the ligand-protein complex CID: 129661094 (07) is more compact and stable. Hydrogen bond analysis revealed favourable interactions with the reported amino acid residues. Overall, this study suggests that daidzein derivatives in particular show promise as potential inhibitors of H. pylori.


Helicobacter pylori , Isoflavones , Molecular Docking Simulation , Molecular Dynamics Simulation , Helicobacter pylori/drug effects , Helicobacter pylori/metabolism , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/metabolism , Humans , Hydrogen Bonding , Ligands , Protein Binding , Principal Component Analysis , Helicobacter Infections/microbiology , Helicobacter Infections/drug therapy , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Stomach Neoplasms/microbiology , Stomach Neoplasms/drug therapy
8.
Acta Oncol ; 63: 322-329, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745482

BACKGROUND AND PURPOSE: Perioperative 5-FU, leucovorin, oxaliplatin, and docetaxel (FLOT) is recommended in resectable esophagogastric adenocarcinoma based on randomised trials. However, the effectiveness of FLOT in routine clinical practice remains unknown as randomised trials are subject to selection bias limiting their generalisability. The aim of this study was to evaluate the implementation of FLOT in real-world patients. METHODS: Retrospectively collected data were analysed in consecutive patients treated before or after the implementation of FLOT. The primary endpoint was complete pathological response (pCR) and secondary endpoints were margin-free resection (R0), overall survival (OS), relapse-free survival (RFS) tolerability of chemotherapy and surgical complications. RESULTS: Mean follow-up time for patients treated with FLOT (n = 205) was 37.7 versus 47.0 months for epirubicin, cis- or oxaliplatin, and capecitabine (ECX/EOX, n = 186). Surgical resection was performed in 88.0% versus 92.0%; pCR were observed in 3.8% versus 2.4%; and R0 resections were achieved in 78.0% versus 86.0% (p = 0.03) in the ECX/EOX and FLOT cohorts, respectively. Survival analysis indicated no significant difference in RFS (p = 0.17) or OS (p = 0.37) between the cohorts with a trend towards increased OS in performance status 0 (hazard ratio [HR] = 0.73, 95% confidence interval [CI]: 0.50-1.04). More patients treated with ECX/EOX completed chemotherapy (39% vs. 28%, p = 0.02). Febrile neutropenia was more common in the FLOT cohort (3.8% vs. 11%, p = 0.0086). 90-days mortality (1.2% vs. 0%) and frequency of anastomotic leakage (8% vs. 6%) were equal and low. INTERPRETATION: Patients receiving FLOT did not demonstrate improved pCR, RFS or OS. However, R0 rate was improved and patients in good PS trended towards improved OS.


Adenocarcinoma , Antineoplastic Combined Chemotherapy Protocols , Capecitabine , Docetaxel , Esophageal Neoplasms , Fluorouracil , Leucovorin , Oxaliplatin , Stomach Neoplasms , Humans , Male , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/surgery , Adenocarcinoma/mortality , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Esophageal Neoplasms/surgery , Female , Middle Aged , Aged , Oxaliplatin/therapeutic use , Oxaliplatin/administration & dosage , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Capecitabine/administration & dosage , Docetaxel/administration & dosage , Docetaxel/therapeutic use , Stomach Neoplasms/drug therapy , Stomach Neoplasms/surgery , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Fluorouracil/administration & dosage , Fluorouracil/therapeutic use , Leucovorin/therapeutic use , Leucovorin/administration & dosage , Epirubicin/administration & dosage , Adult , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Aged, 80 and over , Perioperative Care/methods , Esophagogastric Junction/pathology
9.
Cancer Immunol Immunother ; 73(7): 131, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748299

PURPOSE: The variable responses to immunotherapy observed in gastric cancer (GC) patients can be attributed to the intricate nature of the tumor microenvironment. Glutathione (GSH) metabolism significantly influences the initiation and progression of gastric cancer. Consequently, targeting GSH metabolism holds promise for improving the effectiveness of Immune checkpoints inhibitors (ICIs). METHODS: We investigated 16 genes related to GSH metabolism, sourced from the MSigDB database, using pan-cancer datasets from TCGA. The most representative prognosis-related gene was identified for further analysis. ScRNA-sequencing analysis was used to explore the tumor heterogeneity of GC, and the results were confirmed by  Multiplex immunohistochemistry (mIHC). RESULTS: Through DEGs, LASSO, univariate and multivariate Cox regression analyses, and survival analysis, we identified GGT5 as the hub gene in GSH metabolism with the potential to promote GC. Combining CIBERSORT, ssGSEA, and scRNA analysis, we constructed the immune architecture of GC. The subpopulations of T cells were isolated, revealing a strong association between GGT5 and memory CD8+ T cells. Furthermore, specimens from 10 GC patients receiving immunotherapy were collected. mIHC was used to assess the expression levels of GGT5 and memory CD8+ T cell markers. Our results established a positive correlation between GGT5 expression, the enrichment of memory CD8+ T cells, and a suboptimal response to immunotherapy. CONCLUSIONS: Our study identifies GGT5, a hub gene in GSH metabolism, as a potential therapeutic target for inhibiting the response to immunotherapy in GC patients. These findings offer new insights into strategies for optimizing immunotherapy of GC.


CD8-Positive T-Lymphocytes , Glutathione , Immunotherapy , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/immunology , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Glutathione/metabolism , Immunotherapy/methods , Tumor Microenvironment/immunology , Prognosis , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Female , Biomarkers, Tumor/metabolism , Male , gamma-Glutamyltransferase/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
10.
Cancer Immunol Immunother ; 73(7): 119, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713205

BACKGROUND: The programmed death 1 inhibitor toripalimab plus the angio-immuno kinase inhibitor surufatinib showed a tolerable safety profile and preliminary efficacy in patients with advanced solid tumors in a phase I study. METHODS: This open-label, multi-cohort study in China enrolled patients with advanced solid tumors who had failed or were intolerable to standard treatment into tumor-specific cohorts. Patients received surufatinib (250 mg orally, once daily) plus toripalimab (240 mg intravenously, once every three weeks). Results for three cohorts (gastric/gastroesophageal junction [GC/GEJ] adenocarcinoma, esophageal squamous cell carcinoma [ESCC], and biliary tract carcinoma [BTC]) are reported here. The primary endpoint was investigator-assessed objective response rate (ORR) per Response Evaluation criteria in Solid Tumors version 1.1. RESULTS: Between December 17, 2019, and January 29, 2021, 60 patients were enrolled (GC/GEJ, n = 20; ESCC, n = 20; BTC, n = 20). At data cutoff (February 28, 2023), ORRs were 31.6%, 30.0%, and 11.1%, respectively. Median progression-free survival was 4.1, 2.7, and 2.9 months, respectively. Median overall survival was 13.7, 10.4, and 7.0 months, respectively. Overall, grade ≥ 3 treatment-related adverse events occurred in 28 (46.7%) patients. CONCLUSIONS: Surufatinib plus toripalimab showed promising antitumor activity and a tolerable safety profile in immunotherapy-naïve patients with GC/GEJ adenocarcinoma, ESCC, or BTC. These findings warrant further study in larger randomized trials comparing surufatinib plus toripalimab with standard therapies in these tumors. CLINICALTRIALS: gov NCT04169672.


Adenocarcinoma , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Biliary Tract Neoplasms , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Male , Female , Middle Aged , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Biliary Tract Neoplasms/drug therapy , Biliary Tract Neoplasms/pathology , Biliary Tract Neoplasms/mortality , Adult , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Stomach Neoplasms/drug therapy , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Esophagogastric Junction/pathology , Imidazoles/administration & dosage , Imidazoles/therapeutic use , Imidazoles/adverse effects , Aged, 80 and over , Cohort Studies
11.
Sci Rep ; 14(1): 10075, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698201

Intraperitoneal (IP) chemotherapy with paclitaxel (PTX) for gastric cancer (GC) with peritoneal metastasis (PM) is considered a promising treatment approach, however, there are no useful biomarkers to predict the efficacy of IP therapy. We examined the association between intra-peritoneal exosomes, particularly exosomal micro-RNAs (exo-miRNAs), and IP-chemo sensitivity. MKN45 cells that were cultured with intra-peritoneal exosomes from patients who did not respond to IP therapy with PTX (IPnon-respond group) exhibited resistance to PTX compared with exosomes from responding patients (IPrespond group) (p = 0.002). A comprehensive search for exo-miRNAs indicated that miR-493 was significantly up-regulated in exosomes from the IPnon-respond group compared with those collected from the IPrespond group. The expression of miR-493 in PTX-resistant MKN45 cells (MKN45PTX-res) was higher compared with that in MKN45. In addition, MKN45PTX-res cells exhibited lower MAD2L1 gene and protein expression compared with MKN45. Finally, miR-493 enhancement by transfection of miR-493 mimics significantly down-regulated MAD2L1 expression in MKN45 cells and reduced PTX sensitivity. Our results suggest that intra-peritoneal exo-miR-493 is involved in chemoresistance to PTX by downregulating MAD2L1 in GC with PM. Exo-miR-493 may be a biomarker for chemoresistance and prognosis of GC patients with PM and may also be a promising therapeutic target.


Drug Resistance, Neoplasm , Exosomes , Gene Expression Regulation, Neoplastic , Mad2 Proteins , MicroRNAs , Paclitaxel , Peritoneal Neoplasms , Stomach Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Paclitaxel/administration & dosage , Drug Resistance, Neoplasm/genetics , Exosomes/metabolism , Exosomes/genetics , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Cell Line, Tumor , Male , Female , Mad2 Proteins/metabolism , Mad2 Proteins/genetics , Middle Aged , Gene Expression Regulation, Neoplastic/drug effects , Aged , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/administration & dosage
12.
Sci Rep ; 14(1): 10284, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704421

The use of magnetic metal nanoparticles has been considered in cancer treatment studies. In this study, BiFe2O4@Ag nanoparticles were synthesized biologically by Scenedesmus obliquus for the first time and their anticancer mechanism in a gastric cancer cell line was characterized. The physicochemical properties of the nanoparticles were evaluated by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic Light Scattering (DLS), and zeta potential analyses. Cell viability and nuclear damage were investigated by the MTT and Hoechst staining assays, respectively. Flow cytometry analysis was performed to determine the frequency of the necrotic and apoptotic cells as well as cell cycle analysis of the nanoparticles-treated cells. Physicochemical characterization showed that the synthesized particles were spherical, without impurities, in a size range of 38-83 nm, with DLS size and zeta potential of 295.7 nm and -27.7 mV, respectively. BiFe2O4@Ag nanoparticles were considerably more toxic for the gastric cancer cells (AGS cell line) than HEK293 normal cells with IC50 of 67 and 117 µg/ml, respectively. Treatment of AGS cells with the nanoparticles led to a remarkable increase in the percentage of late apoptosis (38.5 folds) and cell necrosis (13.4 folds) and caused cell cycle arrest, mainly at the S phase. Also, nuclear fragmentation and apoptotic bodies were observed in the gastric cancer cells treated with the nanoparticles. This study represents BiFe2O4@Ag as a novel anticancer candidate against gastric cancer that can induce cell apoptosis through DNA damage and inhibition of cell cycle progression.


Apoptosis , Metal Nanoparticles , Scenedesmus , Silver , Stomach Neoplasms , Humans , Apoptosis/drug effects , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Cell Line, Tumor , Metal Nanoparticles/chemistry , Scenedesmus/drug effects , Silver/chemistry , Silver/pharmacology , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , HEK293 Cells , X-Ray Diffraction
13.
Nat Commun ; 15(1): 3684, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693181

The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.


Aptamers, Nucleotide , DNA, Catalytic , Stomach Neoplasms , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Humans , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Cell Line, Tumor , DNA, Catalytic/metabolism , DNA, Catalytic/chemistry , Animals , Receptor, ErbB-2/metabolism , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Reactive Oxygen Species/metabolism , Mice , DNA Repair , DNA Damage , Glutathione/metabolism , Glutathione/chemistry , Nucleic Acids/metabolism , Nucleic Acids/chemistry
14.
Nat Commun ; 15(1): 3771, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704377

Ovarian metastasis is one of the major causes of treatment failure in patients with gastric cancer (GC). However, the genomic characteristics of ovarian metastasis in GC remain poorly understood. In this study, we enroll 74 GC patients with ovarian metastasis, with 64 having matched primary and metastatic samples. Here, we show a characterization of the mutation landscape of this disease, alongside an investigation into the molecular heterogeneity and pathway mutation enrichments between synchronous and metachronous metastasis. We classify patients into distinct clonal evolution patterns based on the distribution of mutations in paired samples. Notably, the parallel evolution group exhibits the most favorable prognosis. Additionally, by analyzing the differential response to chemotherapy, we identify potential biomarkers, including SALL4, CCDC105, and CLDN18, for predicting the efficacy of paclitaxel treatment. Furthermore, we validate that CLDN18 fusion mutations improve tumor response to paclitaxel treatment in GC with ovarian metastasis in vitro and vivo.


Biomarkers, Tumor , Mutation , Ovarian Neoplasms , Paclitaxel , Stomach Neoplasms , Paclitaxel/therapeutic use , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Biomarkers, Tumor/genetics , Claudins/genetics , Claudins/metabolism , Evolution, Molecular , Animals , Middle Aged , Prognosis , Cell Line, Tumor , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Aged , Antineoplastic Agents, Phytogenic/therapeutic use
15.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731534

Two unreported heteropolysaccharides, denoted as YCJP-1 and YCJP-2, were isolated from the herbs of Chloranthus japonicus. YCJP-1 was a heteropolysaccharide composed of glucose, galactose, arabinose, mannose, rhamnose, and a minor proportion of uronic acids, with the molecular weight mainly distributed in the 74,475-228,443 Da range. YCJP-2 was mainly composed of glucose, mannose, and galactose, with the molecular weights ranging from 848 to 5810 Da. To further evaluate the anti-gastric cancer effects of C. japonicus, the inhibitory effects of the crude polysaccharide (YCJP) and the purified polysaccharides (YCJP-1 and YCJP-2) were determined using a CCK-8 assay and colon-forming assay on MGC-803 and AGS gastric cancer cell lines. Our results showed that YCJP, YCJP-1, and YCJP-2 possess prominent inhibitory effects on the proliferation of MGC-803 and AGS cells, and the AGS cell was more sensitive to YCJP, YCJP-1, and YCJP-2. Moreover, YCJP-2 demonstrated superior anti-gastric cancer effects compared to YCJP-1. This could potentially be attributed to YCJP-2's higher glucose content and narrower molecular weight distribution.


Cell Proliferation , Polysaccharides , Stomach Neoplasms , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Weight , Caryophyllaceae/chemistry
16.
Sci Rep ; 14(1): 9008, 2024 04 19.
Article En | MEDLINE | ID: mdl-38637579

This investigation aimed to explore the prognostic factors in elderly patients with unresected gastric cancer (GC) who have received chemotherapy and to develop a nomogram for predicting their cancer-specific survival (CSS). Elderly gastric cancer patients who have received chemotherapy but no surgery in the Surveillance, Epidemiology, and End Results Database between 2004 and 2015 were included in this study. Cox analyses were conducted to identify prognostic factors, leading to the formulation of a nomogram. The nomogram was validated using receiver operating characteristic (ROC) and calibration curves. The findings elucidated six prognostic factors encompassing grade, histology, M stage, radiotherapy, tumor size, and T stage, culminating in the development of a nomogram. The ROC curve indicated that the area under curve of the nomogram used to predict CSS for 3, 4, and 5 years in the training queue as 0.689, 0.708, and 0.731, and in the validation queue, as 0.666, 0.693, and 0.708. The calibration curve indicated a high degree of consistency between actual and predicted CSS for 3, 4, and 5 years. This nomogram created to predict the CSS of elderly patients with unresected GC who have received chemotherapy could significantly enhance treatment accuracy.


Nomograms , Stomach Neoplasms , Aged , Humans , Stomach Neoplasms/drug therapy , Calibration , Cell Division , Databases, Factual , SEER Program
17.
World J Surg ; 48(1): 163-174, 2024 Jan.
Article En | MEDLINE | ID: mdl-38686798

BACKGROUND: Recent studies have revealed that sarcopenia is associated with postoperative complications and poor prognosis. Although neoadjuvant chemotherapy is a promising treatment for gastric cancer, its toxicity may lead to the loss of skeletal muscle mass. This study investigates the changes in skeletal muscle mass during neoadjuvant chemotherapy and its clinical impact on patients with locally advanced gastric cancer. METHODS: Fifty patients who completed two courses of neoadjuvant chemotherapy followed by surgery were included. Skeletal muscle mass was measured using computed tomography images before and after chemotherapy. The proportion of skeletal muscle mass change (%SMC) during neoadjuvant chemotherapy and its cutoff value was explored using the receiver operating characteristic for the overall survival of patients undergoing R0 resection. Risk factors of skeletal muscle mass loss were also evaluated. RESULTS: Overall, 64% of patients had skeletal muscle mass loss during neoadjuvant chemotherapy (median %SMC -3.4%; range: -18.9% to 10.3%). Multivariable analysis identified older age (≥70 years) as an independent predictor of skeletal muscle mass loss (mean [95% confidence interval]: -4.70% [-8.83 to -0.58], p = 0.026). Among 43 patients undergoing R0 resection, %SMC <-6.9% was an independent poor prognostic factor for overall survival (hazard ratio, 11.53; 95% confidence interval, 2.78-47.80) and relapse-free survival (hazard ratio 4.54, 95% confidence interval 1.50-13.81). CONCLUSIONS: Skeletal muscle mass loss occurs frequently during neoadjuvant chemotherapy for locally advanced gastric cancer and could adversely affect survival outcomes.


Muscle, Skeletal , Neoadjuvant Therapy , Sarcopenia , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/mortality , Stomach Neoplasms/surgery , Neoadjuvant Therapy/methods , Male , Female , Aged , Middle Aged , Muscle, Skeletal/pathology , Muscle, Skeletal/diagnostic imaging , Gastrectomy , Tomography, X-Ray Computed , Chemotherapy, Adjuvant , Adult , Prognosis , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
18.
Gan To Kagaku Ryoho ; 51(4): 417-420, 2024 Apr.
Article Ja | MEDLINE | ID: mdl-38644309

The use of nivolumab as first-line therapy for unresectable advanced gastric cancer has now become a standard practice, and its efficacy has been established. This is the first report of a patient with advanced gastric cancer who underwent conversion surgery after first-line nivolumab combination chemotherapy. The patient was a 58-year-old woman. Her medical history included hypertension and dyslipidemia. She had advanced gastric cancer with extensive lymph node metastasis in the left supraclavicular fossa and around the abdominal aorta. After confirming the HER2-negative status and the PD-L1 CPS score to be ≥5, nivolumab was administered in combination with chemotherapy. After the treatment, she underwent a total gastrectomy with D2 dissection, combined splenectomy and pancreatic tail resection for adhesions, and para-aortic lymph node sampling as a conversion surgery. There was no obvious cancerous remnant in the resected specimen, and the pathological response was Grade 3. The patient was alive and recurrence-free at 4 months postoperatively.


Antineoplastic Combined Chemotherapy Protocols , Gastrectomy , Nivolumab , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/surgery , Middle Aged , Female , Nivolumab/therapeutic use , Nivolumab/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Treatment Outcome
20.
Molecules ; 29(7)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38611946

Armillaria sp. are traditional edible medicinal mushrooms with various health functions; however, the relationship between their composition and efficacy has not yet been determined. Here, the ethanol extract of liquid-cultured Armillaria ostoyae mycelia (AOME), a pure wild Armillaria sp. strain, was analyzed using UHPLC-QTOF/MS, network pharmacology, and molecular docking techniques. The obtained extract affects various metabolic pathways, such as JAK/STAT and PI3K/AKT. The extract also contains important compounds such as 4-(dimethylamino)-N-[7-(hydroxyamino)-7-oxoheptyl] benzamide, isoliquiritigenin, and 7-hydroxycoumarin. Moreover, the extract targets key proteins, including EGFR, SCR, and IL6, to suppress the progression of gastric cancer, thereby synergistically inhibiting cancer development. The molecular docking analyses indicated that the main compounds stably bind to the target proteins. The final cell culture experimental data showed that the ethanol extract inhibited MGC-803 gastric cancer cells. In summary, our research revealed the beneficial components of AOME for treating gastric cancer and its associated molecular pathways. However, further research is needed to confirm its effectiveness and safety in gastric cancer patients.


Armillaria , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Ethanol
...